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The longleaf pine (Pinus palustris Mill.) and related ecosystem is an icon of 

the southeastern United States (US). Once covering an estimated 37 million 

ha from Texas to Florida to Virginia, the near-extirpation of, and subsequent 

restoration eforts for, the species has been well-documented over the past ca. 

100 years. Although longleaf pine is one of the longest-lived tree species in 

the southeastern US—with documented ages of over 400 years—its use has 

not been reviewed in the feld of dendrochronology. In this paper, we review 

the utility of longleaf pine tree-ring data within the applications of four pri-

mary, topical research areas: climatology and paleoclimate reconstruction, fre 

history, ecology, and archaeology/cultural studies. Further, we highlight knowl-

edge gaps in these topical areas, for which we introduce the Longleaf Tree-Ring 

Network (LTRN). The overarching purpose of the LTRN is to coalesce part-

ners and data to expand the scientifc use of longleaf pine tree-ring data across 

the southeastern US. As a frst example of LTRN analytics, we show that the 

development of seasonwood chronologies (earlywood width, latewood width, to-

tal width) enhances the utility of longleaf pine tree-ring data, indicating the 

value of these seasonwood metrics for future studies. We fnd that at 21 sites 

distributed across the species’ range, latewood width chronologies outperform 

both their earlywood and total width counterparts in mean correlation coef-

cient (RBAR=0.55, 0.46, 0.52, respectively). Strategic plans for increasing the 

utility of longleaf pine dendrochronology in the southeastern US include [1] sav-

ing remnant material (e.g., stumps, logs, building construction timbers) from 

decay, extraction, and fre consumption to help extend tree-ring records, and 

[2] developing new chronologies in LTRN spatial gaps to facilitate broad-scale 

analyses of longleaf pine ecosystems within the context of the topical groups 

presented. 

Keywords: tree ring, savanna ecology, climatology, climate reconstruction, 

fre, archaeology 
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”Even though I came from longleaf country in Alabama and in my 

later years had learned more and more about the subject, I realized 

how little I really knew—and how much more I had to learn and 

how much more remained for science to discover—about the 

American South’s signature tree.” 

E.O. Wilson 

In memoriam, foreward, Finch et al. (2012) 

1. Introduction 

The tragic plight and subsequent eforts to restore longleaf pine (Pinus palus-

tris Mill.) in the southeastern United States have been well documented over 

the last several decades. Longleaf pine is a foundation species for the diferent 

longleaf pine ecosystems that once-collectively spanned an estimated 37 million 

ha (Frost, 2007), making it one of the largest ecosystem assemblages in North 

America during the late Holocene. Euro-American colonization of the south-

eastern US brought about detrimental land use practices—such as widespread 

logging, fre suppression, habitat fragmentation, and a host of other exploita-

tive practices that have reduced the pre-colonial range to just over 4 million ha 

(Oswalt & Guldin, 2021) (Figures 1,2). As one of the longest-lived tree species 

in the southeastern US, with average ages (e.g. 300-400+ years) second only 

to bald cypress (Taxodium distichum Rich.; e.g., Stahle et al. 2012), longleaf 

pine is highly valued within the discipline of dendrochronology for the scientifc 

information embedded within its rings. As the science of dendrochronology pro-

gresses, coeval with current and impending climate and environmental change, 

there is a need to review the current knowledge of the species and expand the 
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18 utility of tree-ring data, especially within the context of ongoing restoration 

eforts. 

Following the earliest descriptive literature on longleaf pine (e.g., Bartram 

1791; Williams 1837; Michaux 1857; Gosse 1859), much of the initial research 

was focused on the economic value and exploitation of its ecosystem Ashe (1894); 

Schwarz (1907); Harper (1913), particularly for the naval stores Gamble (1921); 

Cary (1928); Harper (1944) and timber industries Harper (1928); Wahlenberg 

et al. (1946). A growing volume of literature, which has seen resurgence in recent 

decades, has focused on longleaf biogeography and natural history (Mohr, 1897, 

1901; Frost, 1993; Earley, 2004; Stambaugh et al., 2017). Noted for its role 

as a foundation species in a variety of ecosystems that were once extensive 

throughout the southeastern Gulf and Atlantic Coastal Plain, longleaf are now 

reduced to the point of being listed as a globally endangered species and one of 

the U.S.’s most endangered ecosystems (Noss & Scott, 1995). 

1.1. Natural History and Exploitation 

Longleaf pine is the key component to a wide range of savanna and woodland 

ecosystems (Platt, 1999; Oswalt et al., 2012; Peet et al., 2018) across the primary 

physiographic regions of the southeastern US (e.g., Atlantic and Gulf Coastal 

Plains, Piedmont, Ridge and Valley, Cumberland Plateau, Blue Ridge), from 

coastal locations to elevations approximately 600 m.a.s.l. (Figure 3; Boyer 1990; 

Stout & Marion 1993; Stowe et al. 2002). Accounts from the early 18th through 

early 20th centuries indicate that longleaf pine was dominant across much of 

this range. Longleaf pine ecosystems, while shaped by edaphic and climatic 

factors, are ubiquitously maintained by frequent surface fre (Chapman, 1932; 

Heyward, 1939; Bridges & Orzell, 1989; Brockway et al., 2007; Platt, 1999; 

Stambaugh et al., 2011); hence, longleaf pine has developed several reproductive 

and morphological adaptations to fre, such as the presence of needle tufts that 
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A B

C D

Figure 1: Early photographs of widespread logging and distribution of longleaf throughout the 

southeastern US. (A) Newly-harvested longleaf logs headed to a lumber mill near Weirgate, 

Texas ca. 1930. (B) Harvesting longleaf pine ca. 1915 near De Leon Springs, Florida with 

horse and wagon. (C) A link-and-pin rail car along the Escambia Railway loaded with virgin 

longleaf pine near Century, Florida ca. 1925. (D) Stacks of milled longleaf pine ready for 

shipping at a port near Fernandina, Florida ca. 1900. Photographs in panel A from University 

of North Texas Libraries, Portal to Texas History, and B, C, and D from the Florida State 

Photographic Collection. 

45 insulate terminal buds, thick bark to protect against heat transfer, and self-

pruning lower branches to prohibit crown fres (Boyer, 1990; Landers et al., 

1995). Scores of federally protected species inhabit longleaf pine ecosystems 

(Walker, 1993; Zion et al., 2019). Notably, certain longleaf pine habitats—based 

on e.g., tree density, size, age, structure, and ground cover—act as optimal 

niche gestalts by allowing the endangered Red-cockaded Woodpecker (Picoides 
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51 borealis Vieillot) to not only persist, but to thrive (Jackson, 1994; Engstrom 

52 & Sanders, 1997; Conner et al., 2001; James et al., 2001; Shaw & Long, 2007; 

53 Kaiser et al., 2020). 

A B

C D

Figure 2: Early 20th century photographs of the naval stores industry across the southeastern 

US. (A) Typical scene of a naval stores operation from ca. 1920s northern Florida. (B) Cup-

ping a tree in an Alabama longleaf pine forest for turpentine gum production ca. 1930–1949. 

(C) After widespread logging, stumps were removed from the ground and transported to a 

processing facility, such as the one shown here of Newport Industries, Pensacola, Florida ca. 

1956. (D) A naval stores distillery in Florida ca. 1910 showing the rosin yard, where raw 

pitch was stored in wooden barrels for turpentine processing. Photographs in panels A, C, 

and D from the Florida State Photographic Collection and B from the Alabama Department 

of Archives and History. 

The naval stores (i.e., pitch, rosin, tar, and turpentine) industry began in 
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55 the early 1600s in Virginia (Frost, 2007). The earliest production focused on 

using naturally preserved stumps and other lightwood—also colloquially termed 

fatwood, fat lighter, or lighter knot—due to the high amount of resin and hence 

ease of catching fre for pitch and tar manufacturing. During the colonial pe-

riod, the naval stores industry in the southeastern US, particularly in North 

and South Carolina, was not only an important part of the regional economy, 

but also a critical source of pitch and tar to western Europe for the use of seal-

ing wooden vessels. Throughout the 19th to mid-20th century, industry meth-

ods and production continuously expanded across much of the southeastern US 

(Outland III, 2004; Barnett, 2019). Although harvesting longleaf pine for tim-

ber began during the colonial period for shipbuilding (Mundo et al., 2022), the 

most extensive cutting prior to the 1830s was primarily for agricultural land 

clearing, especially along the Atlantic Coastal Plain (e.g. US States of Virginia, 

North Carolina, South Carolina). For most of the 19th century, intensive logging 

was generally restricted to stream courses and railroad corridors (Frost, 2007). 

However, with the naval industry demand and the expansion of railways across 

the region, nearly all the remaining longleaf pines were logged and exported to 

other regions of the US and abroad (Oswalt et al., 2012). After the ca. 1930s, 

much of the cutover land was converted to agriculture or, in some locations, lon-

gleaf pine was replaced with loblolly (Pinus taeda L.) and slash (Pinus elliottii 

Engelm.) pine plantations. 

Fire suppression eforts spanning most of the 20th century contributed to the 

mesophication of longleaf pine habitats (i.e., hardwood dominated woodlands), 

presenting a challenge for conservation and restoration that include prescribed 

fre (Gilliam & Platt, 1999; Varner III et al., 2005; Ryan et al., 2013). Other 

important conservation and management issues include habitat destruction by 

invasive and non-native species, such as feral hogs (Sus scrofa L.), which were 
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82 frst introduced by the Spanish in the 1500s and whose numbers increased ex-

ponentially by the late 20th century (Wood & Roark, 1980; Frost, 1993, 1997; 

Lipscomb, 1989). Fortunately, a renewed and growing interest in longleaf pine 

for timber and habitat conservation has occurred over the past few decades. 

Today, numerous range-wide conservation and restoration strategies exist to 

help guide public and private landowners in longleaf pine reestablishment (e.g. 

Sellers et al. 2021; Oluoch et al. 2021. Such widespread eforts include The Lon-

gleaf Alliance—a consortium aimed at guiding longleaf restoration, stewardship, 

and conservation using science-based outreach, partnership engagement, and 

on-the-ground assistance—as well as targeted Federal programs that provide 

incentives to private landowners for planting longleaf pine in lieu of commercial 

forest species such as loblolly and slash pine. Along with the renewed interest 

in restoring longleaf pine habitat across the southeastern US over the past ca. 

30 years, researchers have discovered the scientifc value of longleaf pine tree-

ring records and their contribution to better understanding the structure and 

function of longleaf pine ecosystems, among other related topics. 

Longleaf pine meets many requirements as a valued species within the feld 

of dendrochronology. For example, longleaf pine [1] is a long-lived and widely 

distributed tree in the southeastern US and is a primary component of savannas 

and woodlands, including coastal plain and montane environments, from east-

ern Texas to southern Virginia, [2] has annual ring-width growth that is highly 

responsive to climate and environmental fuctuations, [3] is a recorder of fre 

activity, and [4] was widely used as a construction material for historical struc-

tures. Because of its high resin content, remnant longleaf pine material is often 

well-preserved and abundant across the southeastern US landscape, and timber 

from this species was commonly used for construction beginning in the 18th 

century. These factors allow for the development of long tree-ring chronologies 
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109 (> 500 years) from remnant, archaeological, and living longleaf pine in Georgia 

and Louisiana (Stambaugh et al., 2011), Mississippi (White & Harley, 2016; 

Herrmann et al., 2016; Harley et al., 2017a; Bregy et al., 2022), North Car-

olina (Maxwell et al., 2021) and Florida (Harley et al., 2017b). Despite these 

positive attributes, tree-ring research using longleaf pine (for purposes other 

than silviculture) has been relatively limited compared to other species in the 

southeastern US, such as bald cypress (e.g., Stahle et al. 2012). As an example, 

only 20 site-unique records have, so far, been contributed to the International 

Tree-Ring Data Bank (ITRDB; Mendely Data doi: 10.17632/dm8mdvnfmy.1). 

Given the broad utility of longleaf within the discipline of dendrochronology, 

additional tree-ring collections throughout its range—especially in the context 

of a data network—would facilitate deeper understandings of this iconic species 

within the context of natural history. 

The Longleaf Tree-Ring Network (LTRN) is both a collection of individuals 

and a database currently consisting of over 35 researchers in academia, conserva-

tion, land management, and government who have come together with the goal 

to expand the scientifc use of longleaf pine tree-ring data across its range within 

the southeastern US and beyond. This project seeks to: [1] provide a review of 

longleaf pine-specifc dendrochronological research to highlight the status of the 

science and identify knowledge gaps within the bounds of primary topical appli-

cations (Climate, Fire, Ecology, and Archaeology/Cultural Studies), [2] 

increase public availability of unpublished longleaf pine tree-ring chronologies, 

[3] update and extend previously-developed records, [4] develop new records 

within geographic areas without representation, [5] explore the development 

of longleaf pine tree-ring records based on new and emerging tree-ring meth-

ods (e.g., earlywood/latewood and false-ring chronologies), and [6] promote the 

value and utility of longleaf pine tree-ring records to stakeholders who may ben-
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Figure 3: Spatial and temporal distribution of longleaf pine tree-ring data compiled by the 

LTRN. Historical, native range of longleaf pine across the southeastern US (from Little Jr 

1971) shown as a gray polygon, with tree-ring records included on the ITRDB denoted by a 

flled circle. Length of chronology is binned to the starting century of each record. Figure 

generated using the R Statistical Software (v4.2.1; R Core Team 2022). 

136 eft from awareness of their potential application (e.g., researchers in relevant 

137 felds, land managers and/or owners). We also report here our initial develop-

138 ment of a database of tree-ring chronologies, progress on making chronologies 
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139 and associated data (e.g. plot-level vegetation data) available for research, and 

current eforts on developing new records, including records based on emerging 

methods. 

2. Primary Applications in Dendrochronology 

2.1. Climate 

Longleaf pine holds tremendous potential for contributing to proxy-based 

paleoclimate reconstructions in the southeastern US, though this potential has 

only been realized in recent decades. Early examinations of longleaf pine radial 

growth were conducted in the early 1900s (e.g., Schwarz 1907); however, the 

infuence of climate on the species was not examined in detail until the 1990s 

(Platt et al., 1988; Devall et al., 1991; West et al., 1993). Two primary factors 

likely contributed to the slow development of longleaf pine dendrochronological 

analyses. First, early dendrochronological research in the southeastern US em-

phasized examination of exceptionally long-lived species such as bald cypress 

(Stahle et al., 1985; Stahle & Cleaveland, 1992; Stahle et al., 1998), a species 

that grows throughout much of the longleaf pine range, has a lifespan upwards 

of 2,000 years, and is sensitive to variations in spring and summer precipita-

tion and streamfow (Stahle et al., 2012; Therrell et al., 2020). Consequently, 

the perceived value of bald cypress as the primary source of paleoclimate infor-

mation likely delayed the investigation of longleaf pine for dendroclimatology. 

The second contributing factor to the lack of longleaf pine tree-ring studies is 

likely related to the difculty in crossdating the annual growth rings of longleaf 

pine relative to many other species. Highly sensitive growth patterns of longleaf 

pine, coupled with an abundance of intra-annual variations in latewood density 

(i.e., false rings) that can easily be misconstrued as annual rings, creates dis-

tinct challenges for developing absolutely-dated and robust chronologies from 
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165 the species (Henderson & Grissino-Mayer, 2009; Patterson et al., 2016). 

Longleaf pine grows in sandy or rocky soils, and despite having a deep tap-

root, their overall root system is relatively shallow (Miller et al., 2006; Crockett 

et al., 2010). The root system architecture, however, enables individuals in 

certain xeric habitats to be highly sensitive to changes in precipitation and soil 

moisture. While the annual growth patterns of longleaf pine have been underap-

preciated as a paleoclimatic proxy, several recent studies have successfully used 

longleaf pine for climate applications (e.g., Mitchell et al. 2020; Collins-Key & 

Altman 2021; Maxwell et al. 2021; Stambaugh et al. 2021; Bregy et al. 2022) 

indicating the potential of this species for future paleoclimatic studies. 

Initial studies examining longleaf pine climate sensitivity identifed precip-

itation as the dominant climatic factor infuencing radial growth (Lodewick, 

1930; Coile, 1936). Little further analysis of this climate sensitivity was con-

ducted until the late 20th century, when subsequent research showed positive, 

reliable relationships between radial growth and variability in soil moisture and 

precipitation (Zahner, 1989; Devall et al., 1991; Meldahl et al., 1999). Contin-

ued work corroborated these relationships across much of the historical range 

of longleaf pine (Foster & Brooks, 2001; Henderson & Grissino-Mayer, 2009; 

Patterson et al., 2016). Additionally, Bhuta et al. (2009) found a positive and 

signifcant relationship between winter (January and February) temperatures 

and ring width at the northern latitudinal range limit of longleaf pine in Vir-

ginia. 

The consistent response of longleaf pine to precipitation across the species’ 

range led to the inclusion of the species in paleoclimatic reconstructions of 

drought (Ortegren, 2008; Cook et al., 2010; Pederson et al., 2012), particularly 

as an integral driver of some of the drought reconstruction models of the North 

American Drought Atlas (Cook et al., 1999). Similarly, the sensitivity of the 
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192 species to growing season soil moisture resulted in the incorporation of longleaf 

pine chronologies in a 285-yr (1700–1985) streamfow reconstruction of the Flint 

River in Georgia, USA (Knight et al., 2004). The connection between longleaf 

pine and streamfow is indirect, as both streamfow and longleaf pine growth 

respond to changes in water balance, rather than longleaf pine responding to di-

rect changes in streamfow. Further work expanding on this indirect relationship 

has used longleaf pine as a predictor to reconstruct streamfow in various areas 

of the southeastern US (Harley et al., 2017b; Maxwell et al., 2017).Harley et al. 

(2017b) used a multi-species tree-ring network to reconstruct Suwannee River 

(Florida) discharge during the period 1550–2005. Notably, they found that 

longleaf pine chronologies (n=10) outperformed those from seven other species 

(n=31), including bald cypress (n=15), for the average relative explained vari-

ance in the reconstruction model, which demonstrates the value that drought-

sensitive longleaf pines have for providing pre-instrumental estimates of climate 

and streamfow across the southeastern US. 

Further advances in the dendroclimatology of longleaf pine have beneftted 

from the development of seasonwood (e.g. earlywood, latewood) chronologies 

and subsequent examinations of diferential seasonal growth in the species. The 

majority of interannual radial growth variability for longleaf pine is in the late-

wood zone, and latewood width has proven more sensitive than total-ring width 

to hydroclimate variability, particularly summer and fall precipitation (Meldahl 

et al., 1999; Henderson & Grissino-Mayer, 2009; Gentry et al., 2010; Patter-

son et al., 2016; Mitchell et al., 2019). Although several studies have found a 

positive relationship between total tree-ring width of longleaf pine and spring 

precipitation (Slack et al., 2016; Collins-Key & Altman, 2021; Stambaugh et al., 

2021), storm events that produce large amounts of precipitation can be the main 

driver behind this relationship, with more rainfall yielding a wider-than-average 
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219 latewood growth band (Gentry et al., 2010; Knapp et al., 2016; Mitchell et al., 

2019). In the southeastern US, tropical cyclones (TCs) are the most common 

type of storm that produce large quantities of rainfall during the latewood-

growth season (Mitchell et al., 2019). 

The fdelity between latewood ring growth and late-season precipitation has 

supported a recent advance in studies that use longleaf pine data for TC re-

search. Multiple tree-ring metrics (e.g., latewood width, δ18O) from longleaf 

pine have been shown to be particularly sensitive to TC rainfall; thus, can be 

used for reconstructions of TC events, a feld known as paleotempestology (Liu 

& Fearn, 1993, 2000; Emanuel, 2008; Wallace et al., 2014; Muller et al., 2017), 

or more specifcally, dendrotempestology (Dinulica et al., 2012; Tucker, 2015; 

Tucker & Pearl, 2021). Gentry et al. (2010) were the frst to note the sensi-

tivity of longleaf pine latewood width to TC rainfall in Texas. Paleoclimate 

reconstructions of TC precipitation have since incorporated longleaf pine sea-

sonwood (Knapp et al., 2016; Soulé et al., 2021) and more recently, adjusted 

latewood (LWadj; Maxwell et al. (2021); Bregy et al. (2022)). LWadj is cal-

culated by removing the infuence of early season climate on latewood width 

(Meko & Baisan, 2001) and is shown to be more sensitive to climate than raw, 

unadjusted latewood width (Soulé et al., 2021). Using LWadj from longleaf 

pine, recent TC studies identifed an increase in extreme rainfall years over time 

(Maxwell et al., 2021), and further, the large-scale oceanic and atmospheric 

controls of TC rainfall (Bregy et al., 2022). In addition to latewood width 

and LWadj, other longleaf pine ring-width metrics have been linked to TCs, 

including growth suppression due to tree damage (Trouet et al., 2016; Zampieri 

et al., 2020; Collins-Key & Altman, 2021), and inter-annual density fuctuations 

(i.e., false rings) (Mitchell et al., 2019), created when heavy precipitation from 

“drought-busting” TCs brings additional water availability late in the growing 
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246 season, inducing earlywood production for a second time in a single year (?) 

(Maxwell et al., 2012). The examination of δ18O stable isotope values from 

cellulose of longleaf pine latewood has been linked to TC activity (Miller et al., 

2006). To date, the ability of isotopic tree-ring records to capture TC activ-

ity is mixed with multiple studies showing promise (Miller et al., 2006; Mora 

et al., 2007; Labotka et al., 2016), but other sites showing false negatives and 

positives and other difculties therein (Lewis et al., 2011). However, isotopic 

methods have only been used on three sites and thus, the feasibility of using 

δ18O to estimate TC activity from longleaf pine remains unclear and warrants 

more examination. 

The breadth of research that examines longleaf pine ring-width sensitivity to 

extreme rainfall events underscores the value of the species in the feld of clima-

tology and paleoenvironmental reconstruction. We contend that demonstrating 

the reliability of this particular climate sensitivity is critical to engaging in a 

major challenge of dendroclimatology: capturing extreme wet years. During 

such years, multiple extreme rainfall events occur, and the soil becomes satu-

rated. Tree radial growth is often unresponsive to saturation/excess moisture 

(e.g., Fritts 1976), making hydroclimatic reconstructions for those years difcult, 

although possible as demonstrated for other locations and species (Coulthard 

et al., 2016; Nguyen & Galelli, 2018; Nguyen et al., 2021). Longleaf pine can 

inhabit well-drained soils that rarely experience sustained saturation. As a re-

sult, longleaf pine can record multiple extreme events in one growing season 

and may therefore complement tree-ring data from other species by captur-

ing the full extent of anomalously wet years. We emphasize that longleaf pine 

has strong potential as a paleoclimatic proxy, particularly for hydroclimate ex-

tremes. Promising avenues within this context include [1] paleotempestology 

and [2] targeting the storm season to augment other species, particularly in a 
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273 high-resolution (sub-annual) framework. 

2.2. Fire 

Longleaf pine is one of the most fre-adapted species in North America. At 

the seedling stage, small trees maintain a grass-like architecture wherein the 

stem remains < 50 cm tall and the apical bud is protected from fre by a dense 

cluster of long (20−40 cm) green needles (Wahlenberg et al., 1946; Brown, 1964). 

This protracted stage can last ca. 5−25 years (Bruce et al., 1959), allowing the 

seedlings to develop a robust root system. At a certain point in time, around 

when the stem reaches 2.5 cm diameter, the seedlings undergo a rapid vertical 

growth surge that thrusts the apical bud out of the range of surface fre. This 

“bolting” period lasts for several years, after which the trees can reach >5 m in 

height and begin to mature. As they grow, longleaf pine trees develop thick bark 

that resists heat damage (Heyward, 1939; Gilliam & Platt, 1999; Barnett, 1999), 

although cambial damage from passing fres is common, particularly when trees 

are young, allowing for tree-ring reconstructions of fre history, especially if the 

earliest growth years can be extracted in samples (Hufman & Rother, 2017). 

Longleaf pine ecosystems are fre maintained. Given the high vegetative pro-

ductivity of the southeastern US, longleaf stands often include abundant surface 

fuels that can be cured to burn in a relatively short and dry weather window. 

Furthermore, the pine litter and the associated herb and shrub understory is 

highly fammable and promotes frequent, low-severity fre (Fonda, 2001; Platt 

et al., 2016). These frequent surface fres preclude other, less fre-adapted species 

from being recruited into the canopy. Regular burning inhibits heavy fuel accu-

mulation and ladder fuel structure. This reduces the risk of high-severity fres 

that reach the crown and maintains communities where longleaf pine is com-

monly the sole dominant tree in areas otherwise occupied by herbaceous and 

shrub communities (Heyward, 1939; Lavoie et al., 2010). 
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300 Despite being one of the most fre-dependent tree species, surprisingly little 

quantitative data exist on historical fre regimes in longleaf pine ecosystems. 

The historical fre regime for the longleaf pine ecosystem is estimated to be 1-4 

years (Frost, 1993, 1998; Guyette et al., 2012; Glitzenstein et al., 1995, 2003; 

Stambaugh et al., 2011; White & Harley, 2016; Kirkman et al., 2017; Palmquist 

et al., 2015; Gilliam & Platt, 1999; Schafer et al., 2015). A recent assessment of 

geographic distribution of fre-scar studies in North America revealed a spatial 

concentration of studies in western forests, particularly in ponderosa pine (Pinus 

ponderosa Douglas ex C. Lawson) and dry mixed conifer forests (Margolis et al., 

2022). Relative to other low-elevation pine species in eastern North America 

(e.g., shortleaf pine (Pinus echinata Mill.), pitch pine (Pinus rigida Mill.), red 

pine (Pinus resinosa Sol. ex Aiton), few published tree-ring-based studies of 

longleaf pine fre history exist. We are aware of only four refereed articles 

that used crossdated fre scars to reconstruct fre history located in Louisiana 

(Stambaugh et al., 2011), Mississippi (White & Harley, 2016), Georgia (Klaus, 

2019), and northern Florida/southern Georgia (Rother et al., 2020). A few 

additional studies are available as dissertations, theses, or reports (Hufman, 

2006; Henderson, 2006; Bale, 2009; Hufman & Platt, 2014). The study of 

longleaf pine fre history is still in its infancy, and amplifying research eforts in 

this capacity will yield increased spatial and temporal variability of longleaf pine 

fre dynamics and regimes, which provides critical information to the restoration 

and management of longleaf ecosystems. Enormous potential exists to develop 

additional fre histories of signifcant length given that the trees are long-lived, 

and the high resin content slows decomposition and can allow stumps to persist 

on the landscape for a century or more (Stambaugh et al., 2011). For the

southeastern region, longevity (e.g., 400+ years) in fre information is needed to 

extend prior to pre-Euro-American colonization, although shorter records also 
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327 provide valuable information regarding post-settlement fre regimes. 

Figure 4: Scar analysis on a fre-scarred, remnant longleaf pine stump. All panels demonstrate 

the importance of the height at which fre scar analysis is conducted on a cat face. Fast-moving 

ground fres typically scar live longleaf pine lower on the cat face, or open scar wounds (A). A 

dendropyrochronological researcher uses a chainsaw to collect a cross-section from a remnant 

longleaf pine stump as low as possible towards the root-shoot interface, sometimes requiring 

excavation around the stump. Inset (C) shows a polished section collected from the lowest 

possible plane above the root-shoot-interface of (B), following the methods of Hufman and 

Rother (2017). 

328 The dearth of tree-ring based fre-history studies using longleaf pine is re-

lated to numerous factors. First, the loss of approximately 97% of the historical 

longleaf pine range—half of which is in private landholdings—has fragmented 

suitable study areas for this type of work (Oswalt & Guldin, 2021). Old-growth 

stands are now rare (Varner & Kush, 2004). Second, even in places where ecosys-

tems remain in a longleaf pine cover type, old stumps and other remnant mate-

rial needed for multi-century fre history reconstructions (Ferris, 1912; Hawley, 

1921; Barnett, 2019) are left to decay or are consumed by fre. Third, longleaf 

pine does not regularly produce repeated external scarring (i.e., “cat faces”; 
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337 Figure 4A,C) as is commonly found on other pine species (Brockway, 2005; 

Outcalt & Brockway, 2010; Hufman & Rother, 2017). This could be driven 

by the lower-intensity fres that characterize these systems; heating along the 

trunk may remain below thresholds that would produce an open wound. Even 

when scarred, longleaf pine heals rapidly, often closing over wounds in a few 

years (Figure 4C). These limitations can be overcome to produce high-quality 

tree-ring reconstructions of fre in the southeastern longleaf and associated pine 

ecosystems. This region is a frontier for tree-ring based fre histories given the 

previous concentration of research in the western US (Margolis et al., 2022). 

Successful fre-history reconstructions have adapted common approaches or 

devised new ones to better ft with longleaf pine ecology and the process of fre 

in longleaf pine ecosystems. The classic fre-scar approach of target-sampling 

only stumps, snags, and other specimens with evidence of repeated external 

scarring is difcult in longleaf pine ecosystems. In recent years, researchers have 

increasingly included cross sections from trees that are not externally scarred 

but contain internal (buried) scars (Hufman, 2006; Stambaugh et al., 2011; 

White & Harley, 2016; Hufman & Rother, 2017) (Figure 4C). This approach is 

more time intensive as the basal areas of stumps are excavated for sampling near 

ground level and multiple full cross sections are collected vertically along the 

stump axis and analyzed (Hufman & Rother, 2017) (Figure 4B). Despite being 

more tedious, this method of fre scar vertical-position analysis has been shown 

to yield more comprehensive fre regime information, as demonstrated by the bi-

annual fre frequency evidence found in Louisiana by Stambaugh et al. (2011) 

and in Mississippi by White & Harley (2016). These buried scars are often 

relatively small, and care must be taken to ensure that fre scars are properly 

distinguished from other injuries (Hufman, 2006; White & Harley, 2016). In 

some cases, litter and/or soil accumulation, especially in fre-suppressed stands, 
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364 may result in fre scars that are slightly below the current surface, nearer to the 

root-shoot boundary at the time of fre. 

Finally, the seasonality of fre in longleaf pine ecosystems both past and 

present is an area of high interest among land managers, researchers, and other 

stakeholders. The intra-annual position of a fre scar within a tree ring allows 

the researcher to estimate the approximate time of year, or season (e.g. spring, 

summer, dormant) of the burn (Dieterich & Swetnam, 1984; Rother et al., 2018). 

Thus far, the existing fre-scar studies in longleaf pine show substantial variation 

in seasonality across time and space. In some areas, such as in southern Missis-

sippi (White & Harley, 2016) and northern Florida (Hufman, 2006) a greater 

proportion of growing season fres occur near or at the transition of earlywood 

to latewood and are suggestive of a lightning-dominated fre regime (Rother 

et al., 2018). By contrast, in areas where the fre-scar record is strongly dom-

inated by dormant season events, fres were likely due to human ignitions, at 

least in the time window examined (e.g.,Stambaugh et al. 2011; White & Harley 

2016). Dormant and early-spring fres are most common on some private lands 

on the Georgia-Florida border where prescribed fres are applied every one to 

two years for management of quail populations for hunting (Rother et al., 2020). 

The ability to associate a certain fre-scar position with a time of year can be 

improved through insights from cambial phenology studies (e.g., Rother et al. 

2018) or comparisons of fre events with known dates to the fre-scar record. 

Although the importance of frequent, low-severity fre in longleaf pine ecosys-

tems is well understood, we contend that current knowledge regarding the vari-

ability of fre regimes across the range of longleaf pine is limited. There is often 

a single story being told about longleaf pine and fre rather than a more nuanced 

account of how fre frequency, seasonality, and other aspects of the fre regime 

varied with elevation, latitude, proximity to range edge, forest composition, 
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391 and other important factors. Additional tree-ring based fre histories should 

shed light on the spatial and temporal variability of fre activity in longleaf pine 

ecosystems and allow land managers to make more informed decisions regarding 

the application of fre as a restoration and management tool. 

2.3. Ecology 

The ecological amplitude of longleaf pine allows for distinct variations in 

the structure and composition of the communities that make up the longleaf 

pine ecosystems. These systems are dependent on abiotic factors like climate, 

hydrology, topography, and soil, which, through the complex role of fre on over-

story/understory, set it apart from other temperate forested ecosystems in North 

America (Peet, 2007; Ratnam et al., 2011). Dendroecological studies provide 

more in-depth, long-term, and alternative approaches to untangling how abiotic 

variables can infuence longleaf pine radial growth across ecosystems and help de-

fne the foundational composition, structure, and dynamics of longleaf pine. For 

land managers, such insights can improve restoration and conservation-focused 

decision making by providing the land-use and natural disturbance history of a 

site when little to no information is available. 

Ecological investigation of longleaf systems occurred starting in the late 

1980s and much important ecological research and increased understanding of 

the ecology of longleaf pine systems occurred in the 1990s. Despite being un-

derstudied throughout much of the 20th century (Frost, 1993; Oswalt et al., 

2012), recent eforts by scientists and land managers in the Coastal Plain led 

to a more comprehensive understanding of the community composition, stand 

structure, climatic variation, and efects of fre frequency and seasonality in lon-

gleaf pine ecosystems, such as in Alabama (Kush et al., 1999; Meldahl et al., 

1999), Florida (Platt et al., 1988; Rebertus et al., 1993; Olson & Platt, 1995; 

Gilliam & Platt, 1999; Glitzenstein et al., 1995, 2008; Noel et al., 1998; Platt 
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418 et al., 2016; Robertson et al., 2019), Georgia (Pederson et al., 2008; Rutledge 

et al., 2021), Mississippi (Devall et al., 1991; White & Harley, 2016), South 

Carolina, and Texas (Henderson & Grissino-Mayer, 2009) (Figure 5; Table 1). 

Each of the studies listed in Table 1 provides understanding of tree growth and 

development, stand dynamics and disturbance histories, forest productivity, tree 

biology, abiotic and biotic infuences on tree growth, reproduction, and maste-

cology at their respective locations displayed in Figure 5. However, continued 

work is needed to provide more context to these research topics from other ar-

eas across the range of longleaf such as Louisiana, peninsular Florida, coastal 

North Carolina, and montane longleaf forests of Alabama, northern Georgia, 

and western North Carolina (Figure ??. A more holistic and comprehensive 

approach targeting spatial gaps across the range can aid scientists and land 

managers in developing strategies for management, including considerations for 

carbon markets and climate change. 
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Figure 5: Map of dendroecological studies utilizing longleaf pine tree-rings in southeastern 

pine savannas and woodlands (Peet et al., 2018). Key to Paper IDs #1−24 displayed in map 

are located in Table 1. Figure generated in QGIS v3.26. 
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Table 1: Published dendroecological studies of longleaf pine. Complete list of pub-
lished dendroecological studies of longleaf pine and key that accompanies Figure 5 (searched 
12 March 2021). Sources were found using the following search arguments: ALL=(longleaf 
OR (Pinus AND palustris)) AND (dendroecology OR dendrochronology OR treering OR 
tree-ring OR (age AND structure)) in Web of Science. 
Map Reference Map Reference 
ID ID 
1 Platt et al. (1988) 13 Knoepp et al. (2015) 
2 West et al. (1993) 14 Slack et al. (2016) 
3 Devall et al. (1991) 15 Patterson et al. (2016) 
4 Meldahl et al. (1999) 16 Patterson & Knapp (2016) 
5 Bhuta et al. (2008) 17 Rother et al. (2018) 
6 Pederson et al. (2008) 18 Patterson & Knapp (2018) 
7 Varner et al. (2003) 19 Mitchell et al. (2019) 
8 Bhuta et al. (2009) 20 Kaiser et al. (2020) 
9 Henderson & Grissino-Mayer (2009) 21 Kressuk et al. (2020) 
10 Ford et al. (2010) 22 Soulé et al. (2021) 
11 Mattingly et al. (2012) 23 Bhuta & Kennedy (2021) 
12 Ames et al. (2015) 24 Eberhardt et al. (2022) 
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432 Numerous studies have successfully applied release (statistically anomalous 

growth increases) and suppression (decreases) criteria analysis on longleaf pine 

radial growth increments for the purposes of better understanding how his-

torical environmental events, such as logging, extreme wind events (tornadoes 

and TCs), droughts, and fres (Bhuta et al., 2008; Pederson et al., 2008; West 

et al., 1993), infuenced the ecological trajectory of the stand. Greenberg & 

Simons (1999) used dendroecological methods to determine stand structure and 

composition and explored how oaks (Quercus spp.) infuenced longleaf pine 

growth, thereby highlighting that spatial patchiness and the variability of fre 

frequency, seasonality, and intensity are important components in maintaining 

longleaf pine ecosystem dynamics. Because of its important role in the complex 

ecological feedback loops within longleaf pine systems, fre has been the focus of 

many dendroecological analyses. Studies have shown that fre negatively afects 

primary and secondary tree growth during the event year, but often positively 

afects growth in subsequent years by increasing nutrient deposition, and creat-

ing open conditions that moderate competition, facilitating growth releases, and 

encouraging recruitment (Ames et al., 2015; Ford et al., 2010; Slack et al., 2016), 

thereby having an overall positive efect. The negative efects may be an artifact 

of short chronologies built with trees that have experienced long periods of fre 

exclusion, and may be less apparent or entirely diminished in examinations of 

remnant or old-growth wood, pre-fre exclusion. 

Tree-ring analysis has been used to reconstruct individual tree height growth 

patterns in understanding the efects of overstory competition on canopy re-

cruitment (Curtin et al., 2020), while longleaf pine is generally thought of as 

being shade-intolerant, this work showed the persistence of midstory trees in 

high-density stands. However, the growth patterns of midstory trees after being 

released from overstory tree competition warrants further investigation due to 
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459 the overwhelming lack of knowledge of how trees in this vertical strata operate 

within the overall dynamics of the stand. Dendromastecology is a productivity-

related sub discipline of dendroecology that links analyses of growth patterns 

(releases and/or suppressions) to annual mast production in trees (Speer, 2001). 

For longleaf pine, cone production during masting events is related to radial 

growth of the prior year, and lower stand densities can lead to increased masting 

rates and production (Patterson & Knapp, 2016, 2018). Using methods simi-

lar to those employed by dendromastecology studies, dendroentomology focuses 

on studying and identifying efects of past insect outbreaks on radial growth 

of trees (e.g. Swetnam & Lynch 1993; Speer 2001). To date we have found no 

peer-reviewed, tree-ring studies that have analyzed insect, disease, or pathogenic 

efects on longleaf. The limited research on these processes are important areas 

for research as each, singularly or as compounded events, will likely strongly 

impact the trajectory of these ecosystems and the species itself, especially as 

the climate changes. 

As climatic conditions continue to change rapidly, unraveling the efects of 

human and natural disturbances on longleaf pine radial growth and forest com-

position and structure [1] at higher elevation sites and [2] along range margins 

deserves more attention in the southeastern US, as future climate change models 

predict range migration and expansion in these areas (Iverson & Prasad, 2002; 

Prasad et al., 2020). Compared to Coastal Plain locations, less is known about 

the dendroecology of montane longleaf pine communities within the Piedmont 

and Ridge and Valley ecoregions, in part, because only a few known old-growth 

longleaf pine sites remain after a legacy of timbering practices that favored re-

moval of longleaf pine from the overstory (Varner & Kush, 2004). Of the studies 

that do exist in montane stands, Patterson & Knapp (2016) inventoried just the 

longleaf pine in a North Carolina Piedmont community, while others have looked 
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486 extensively at woody stem structure and dynamics in longleaf pine communities: 

two in the Alabama Ridge and Valley (Varner et al., 2003) and two in the Al-

abama Piedmont (Bhuta & Kennedy, 2021; Kressuk et al., 2020). Diferences in 

climate-growth responses across piedmont, montane, sandhill, and coastal plain 

systems were quantifed by Mitchell et al. (2020) and Patterson et al. (2016). 

Within these broader ecoregions, distinct diferences in microtopography lead 

to vastly diferent communities (e.g., cypress dome swamps in longleaf pine wet 

savanna systems), altered fre behavior, and infuenced patterns of tree growth 

(Harley et al., 2015; Mitchell et al., 2019; Patterson et al., 2016; Montpellier 

et al., 2020). 

Studies that investigate climate-growth relationships, and how these rela-

tionships interact with fre and other disturbances—particularly at the western, 

southern, and northern range margins—are necessary because the direction and 

magnitude of climate change (e.g., warmer, cooler, drier, wetter) will have vary-

ing impacts on the growth and ecology of diferent populations across the species’ 

range. Due to historical widespread logging, old-growth longleaf trees are rare, 

and thus most older samples are found as remnant stumps. Improving our 

ability to identify the species of remnant stumps or downed woody debris ac-

curately and correctly from among the various southern yellow pines that often 

co-occur across the southeastern US (e.g., longleaf, shortleaf, loblolly, slash) 

will increase our understanding of the species’ growth requirements and natural 

history. Methods for diferentiating remnant longleaf pine from other southern 

pine species using tree rings have been demonstrated (Eberhardt et al. 2022 ; 

please see Archaeology section for further discussion) as have the mechanisms 

of heartwood formation (Allen & Hiatt, 1994), but more replication is needed 

to solidify these techniques and better understand their application across the 

species range. Continued work is needed to provide additional context to these 
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513 research topics from other areas across the species range in montane longleaf 

pine forests of Alabama, northern Georgia, and the Carolinas, as well as penin-

sular Florida, coastal North Carolina, and Louisiana. A more landscape-scale 

approach to ecological analysis of longleaf pine which represents all parts of 

the species’ range may aid scientists and land managers in [1] understanding 

the stand dynamics and disturbance histories of a site when no other historical 

records are available, [2] understanding how disturbance can impact a site and 

be used, in turn, for better management, [3] making more informed decisions 

when conservation and restoration is a management goal, and [4] developing 

best management practices for carbon markets and climate change adaptation. 

As a fnal thought, a better understanding of the facilitation of juvenile ver-

tical growth (bolting) in false ring production is needed for stand-age dynamics 

studies. Because longleaf pine can persist in the grass stage (as seedlings) for up 

to 20 years (Bruce et al., 1959) with minimal height growth (Pessin, 1934; Boyer, 

1990), methods to determine defnitive age are needed to examine year of ger-

mination and recruitment rates over time. False ring production is widespread 

in the species and some evidence points to climatic relationships, particularly 

with TCs (Mitchell et al., 2019), as is discussed in the Climate section. Under-

standing what mechanisms facilitate bolting in longleaf pine, ring production in 

the grass and bolting stage, and false ring production are important next steps 

for dendroecological research across these systems. 

Key topics for future dendroecological studies (of equal importance) include 

[1] further understanding mechanisms of false ring production, [2] susceptibil-

ity/vulnerability to insect/fungal pathogens (e.g., heart rot and other diseases), 

[3] further studies into masting drivers and mechanisms, [4] deeper exploration 

of the complex biotic interactions between longleaf pine and other species (e.g. 

feedback between trees and grasses that maintain savanna dynamics), [5] car-
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540 bon cycling, [6] biogeographic studies of tree response at the western, northern, 

and southern range boundaries, [7] understanding what mechanisms facilitate 

vertical growth from grass to juvenile life stages, [8] expanding the spatial cover-

age of plot-level longleaf pine dendroecological data (Figure ?? and [9] ensuring 

plot-level demographic data collected for ecological applications is available via 

the DendroEcological Network (Rayback et al., 2020). Understanding how a 

changing climate will impact these topics is also an overarching goal in using 

dendroecology for this longleaf pine. 

2.4. Archaeology/Cultural Studies 

Dendroarchaeology incorporates techniques of tree-ring science to date and 

provenance (i.e., determine the source of origin) of historical structures or ar-

tifacts (Figure 2.4). Not only does this disciplinary subfeld develop valuable 

historical information, but as discussed in this section, recent studies show that 

important climatological and ecological information can be obtained from his-

torical timbers, especially given the history of timber harvesting and construc-

tion since Euro-American colonization throughout the eastern US (de Graauw, 

2017; de Graauw & Hessl, 2020). In the southeastern US, longleaf pine was 

commonly used as a construction material, such that an estimated 75% of colo-

nial era homes, and up to 33% of all lumber manufactured through the late 

1800s, was derived from longleaf pine (Varner & Kush, 2004). Due to its resin 

content and high specifc gravity relative to other pine species (Koch, 1972), 

longleaf pine has served in a wide range of applications such as pilings, joists, 

and trestles where high strength and rot resistance was paramount before the 

advent of pressure-treated lumber. These properties led to a surge in demand 

for longleaf pine timbers during the middle 18th through early 19th centuries 

and contributed to longleaf pine being one of the most harvested tree species in 

the US during this period (Finch et al., 2012; Kellogg, 1909; Smith et al., 2000). 
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567 However, despite the extensive use of longleaf pine in construction, the species 

remains underrepresented in dendroarchaeology studies. At present, only seven 

peer-reviewed studies have dated historical structures containing longleaf pine 

timbers that include six dwellings and one crib dam (Van De Gevel et al., 2009; 

Grissino-Mayer et al., 2010; Garland et al., 2012; Harley et al., 2017a, 2018; 

Leland et al., 2021; Patterson et al., 2021). This collection excludes unpub-

lished theses, dissertations, and gray literature, such as technical reports from 

commercial dendroarchaeology performed by the Oxford Tree-Ring Laboratory. 

Several important themes emerge from the published literature. First, all but 

one study (Leland et al., 2021) used reference chronologies that are not publicly 

available, such as those from Eglin Air Force Base, Florida (Harley et al., 2018), 

Lake Louise, Georgia (Grissino-Mayer et al., 2010; Garland et al., 2012), DeSoto 

National Forest, Mississippi (Harley et al., 2017a; Patterson et al., 2021), and 

Hope Mills, North Carolina (Van De Gevel et al., 2009). Dendro Archaeological 

dating of historical longleaf pine timbers has relied on a relatively small number 

of long reference chronologies that are not yet publicly available. Making such 

records publicly available via the ITRDB would serve to facilitate additional 

dendroarchaeological research across the southeastern US. 

A primary limitation to the dendroarchaeological dating of longleaf pine tim-

bers and artifacts is the lack of publicly available, multi-centennial, seasonally-

resolved chronologies throughout the range of the species. Excluding private 

collections and other datasets that will be added later to public archives as 

part of the LTRN, only 24 longleaf chronologies representing 20 unique sites 

across the range are available on the ITRDB (as of November, 2021, Figure 

3; Mendely Data doi: 10.17632/dm8mdvnfmy.1). Two of these chronologies 

from archaeological collections: Jefries Smokehouse in North Carolina (Bare-

foot, 1996) and the Terminal Warehouse in New York (Leland et al., 2021). 
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Figure 6: Examples of historic longleaf pine timbers from across the U.S. (A) A researcher 

uses a handsaw to collect a section from a dugout canoe in Laurinburg, NC. (B) Cofn plank 

boards extracted from the unmarked grave sites associated with the Asylum Hill Cemetery 

(ca. 1855−1935) on current grounds of the University of Mississippi Medical Center, Jackson, 

MS (Herrmann et al., 2016; Malis et al., 2022). (C) A researcher uses a Pressler© GmbH 

dendroarchaeology bit (Gestern, Germany) attached to a variable-speed hand drill to collect 

a 12-mm diameter core from a longleaf pine timber near Tupelo, Mississippi (Patterson et al., 

2021). (D) An undated longleaf pine structure on a private ranch near Zolfo Springs, Hardee 

County, Florida, which is near the southern range limit of the species. (E) A cache of longleaf 

pine timbers from the Terminal Warehouse in New York, NY, the origins of which were sourced 

in a provenance study to the southeastern US (Leland et al., 2021). 

594 Between these datasets are large spatial data gaps; many historical structures 

that may be identifed for future study will be hundreds of kilometers away from 

the nearest available reference chronology (Figure 3, ITRDB chronologies, e.g., 

Garland et al. 2012). Temporal data gaps are also a limitation to dating histor-

ical longleaf pine timbers. Multi-century chronologies are necessary to overlap 

with the historical periods in question, and contemporary old-growth stands are 

rare due to extensive logging during the late 1800s (Frost, 1993). While most of 
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601 the longleaf pine chronologies available on the ITRDB are multi-centennial in 

length, few extend prior to 1750, which is necessary (e.g., having enough overlap 

between the historical timbers and the reference chronology) in most cases to 

visually and statistically crossdate structures or artifacts as recent as the early 

1800s. Of the 22 chronologies developed from living trees on the ITRDB, only 

11 pre-date 1700 CE. While additional, multi-centennial chronologies are needed 

for dendro archaeological dating and provenancing, data from historic timbers, 

as well as from remnant wood, have the potential to extend chronologies beyond 

1700 CE, feeding back into improved capabilities to date historic structures and 

artifacts, and for ecological and climate applications. 

Recent improvements in the dating certainty of longleaf pine materials in-

cludes the development of seasonally-resolved chronologies and the ability to 

identify longleaf pine from other southern US yellow pines (e.g., shortleaf, 

loblolly pine), as discussed in the Climate and Ecology sections, respectively. 

The interannual variability of latewood ring width has been suggested recently 

as the most climatically-sensitive ring-width measure for longleaf pine (Mitchell 

et al., 2019; Soulé et al., 2021), and has also been used for crossdating living 

and remnant material (Patterson et al., 2021; Stambaugh et al., 2021). Specifc 

to dendroarchaeology, longleaf pine latewood chronologies have proven useful 

where total ring-width data have not. For example, Patterson et al. (2021) used 

latewood widths to date the Walker House in Tupelo, Mississippi after unsuc-

cessfully attempting total ring-width. Despite this potential, only half of the 

longleaf pine ITRDB chronologies are seasonally resolved (n=12). In addition 

to developing a more spatially-extensive network of longleaf pine chronologies, 

increasing the availability of seasonally resolved data could prove to be transfor-

mative in southeastern US dendroarchaeology and allow for the dating of pre-

viously undateable structures and artifacts across the region. Another recent 
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628 advance is the ability to identify southern yellow pine remnant material (see 

Wahlenberg et al. 1946; Eberhardt et al. 2022). Proper identifcation of tree 

species is important for choosing appropriate reference chronologies in the feld 

of dendroarchaeology, and remnant material derived from the various south-

ern yellow pines can be difcult to distinguish from one another. Recently, 

Eberhardt et al. (2022) provided a method to distinguish longleaf pine from 

other southern yellow pine species using quadratic discriminant analyses of pith 

and second-ring diameter. When adopted for dendroarchaeology, this method 

will be useful for determining species-specifc building materials and identifying 

longleaf pine used outside the former range of the species. Finally, the feld 

of dendroarchaeology is advancing to including new dating techniques (e.g., x-

ray computed tomography, strontium isotopes, quantitative wood anatomy) for 

crossdating and provenancing wood (Domı́nguez-Delmás et al., 2020), and we 

anticipate these methods will improve the accuracy and capabilities of dating 

longleaf pine material. 

The LTRN will improve dendro archaeological dating for a number of ap-

plications. First, a more expansive tree-ring network increases the likelihood of 

dating additional structures and reduces reliance on spatially-distant chronolo-

gies. The network will also allow for strengthened dendro provenancing of lon-

gleaf pine material found outside the range of the species (e.g., Leland et al. 

2021; Mundo et al. 2022). While results from these studies are interesting in 

their own right, information beyond tree-ring data, such as improved insights 

into timber trade, workmanship, and wood preference can be acquired to reveal 

the spatial footprint and evolution of exported pine material through time. An-

other beneft of the improved network will be the use of archaeological material 

in climatological and ecological research. Dendroarchaeological data have the 

potential to extend existing chronologies farther into the past (Cook et al., 2015; 
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655 Matheus et al., 2017), informing a broader context of environmental change (e.g., 

in the development of drought atlases). Other potential advances include anal-

yses of range-wide crossdating and climate-sensitivity of longleaf pine. Thus 

far, a composite southern Mississippi latewood chronology (Harley et al., 2017a; 

Patterson et al., 2021) that contains house and cofn timbers (Herrmann et al., 

2016), was used by Bregy et al. (2022) for dendroclimatic applications along 

the broader US Gulf Coastal Plain. Though not using longleaf pine, de Graauw 

& Hessl (2020) compiled data from 18 log structures to examine forest recruit-

ment and dynamics—a practice that can be adopted for longleaf pine. In all, 

the potential to develop long, climate- or ecology-sensitive tree-ring proxy data 

from longleaf pine increases with the addition of historic timbers, for which the 

absolute dating depends on the spatiotemporal extension of the LTRN. 

3. Conclusions and future work 

3.1. The Longleaf Tree-Ring Network 

Our review of the literature within the context of the utility of longleaf pine 

tree rings in the natural and cultural sciences, in part, revealed the need for a 

collaborative research working group focused on broad-scale analyses as applied 

specifcally to climate, fre, ecology, and archaeology. Along with the goals of the 

LTRN mentioned previously, we developed an initial database of 98 complete, 

extant chronologies across the range of longleaf pine not yet included on the 

ITRDB (Figure 3; Mendely Data doi: 10.17632/dm8mdvnfmy.1). Across the 

LTRN, we highlight spatial gaps in the [1] longleaf pine-bluestem savannas of 

Louisiana; Mississippi, and North Carolina, [2] longleaf pine-wiregrass savannas 

of southeastern Alabama, and south-central Georgia and [3] transition wood-

lands of south-central Alabama. Along with flling gaps in data, we implore 

researchers to consider a few critical needs of future longleaf studies: developing 
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681 seasonwood chronological data, and the importance of collecting and archiving 

remnant longleaf material to safeguard against loss of material, and hence sci-

entifc information, to decomposition or fre consumption. The collection and 

addition of remnant material will also serve to maximize chronology develop-

ment at each study site. Most of the longleaf pine chronologies in the LTRN 

begin in the 17th and 18th centuries (Figure 3). Yet, a few records extending 

to the 15th and 16th centuries are located in the northwest Florida panhandle 

and coastal South Carolina, and represent specifc studies that have targeted 

the collection of remnant material (Henderson & Grissino-Mayer, 2009; Maxwell 

et al., 2021; Harley et al., 2018). 

3.2. Seasonwood Chronologies 

Developing seasonwood (i.e., earlywood, latewood) chronologies from lon-

gleaf pine is another critical need that spans all discussed topics and is one of 

the primary foci of the LTRN. To this end, the following analysis highlights the 

superiority of seasonwood chronologies over total ring width. We analyzed the 

variability of latewood width (LWW), earlywood width (EWW), and total ring 

width (TRW) from 21 sites included in the LTRN (three of which are currently 

available via the ITRDB), distributed across the widest possible expanse of the 

range as currently available, and representative of various habitats (e.g. mon-

tane, coastal; Figure 7). We detrended each seasonwood chronology for the 21 

sites with a horizontal mean line, which acted to standardize all measurements 

and decrease artifacts from early-aged growth anomalies that are common with 

raw values while still preserving growth patterns and frequencies and used the 

standard chronology for subsequent analyses. We fnd that at all 21 sites in-

cluded in the analysis, LWW chronologies outperform both their EWW and 

TRW counterparts in the mean correlation coefcient (RBAR=0.55, 0.46, 0.52, 

respectively). Both the probability density functions and box plots show that 
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708 LWW chronologies had higher frequency of both narrower-than-average and 

wider-than-average growth rings—which are termed marker rings and repre-

sent a stronger environmental or climatic signal shared amongst trees in each 

collection (Fritts, 1976; Stokes, 1996)—as revealed by the tail ends of the dis-

tributions (gray arrows). Previous work demonstrates this phenomenon at the 

local scale (Meldahl et al., 1999; Henderson, 2006; Gentry et al., 2010; Patter-

son et al., 2016; Mitchell et al., 2019). Our analysis across the longleaf range 

demonstrates that this property holds up across the southeastern US. Hence, 

any future chronology development of longleaf pine should include seasonwood 

measurements as standard, no matter the research goal. 

3.3. Collecting and archiving remnant longleaf 

Longleaf pine is a valued species for the feld of dendrochronology, par-

ticularly within the context of understanding current and past climates, fre 

regimes, forest ecology, and archaeology. Although some of the points discussed 

regarding the utility of longleaf pine tree-ring widths in this review paper are 

topic-specifc, others span all identifed topics of climate, fre, ecology, and ar-

chaeology. We highlight the scientifc need to develop new and longer tree-ring 

records from this species across the broadest possible extent of the species’ range 

both within the southeastern US and from historic timber material outside its 

natural distribution. Yet, given the widespread exploitation of the species since 

Euro-American colonization, old longleaf pine forests are rare. Many of the 

areas that still contain old living longleaf pine trees have already been identi-

fed and studied, but remnant material is often overlooked. The decomposition 

rate for woody material in the southeastern US is rather quick, yet yellow pine 

stumps, particularly longleaf pine, more than 500 years old still exist in many 

areas because of the high resin content of the species. Nevertheless, all stumps 

will eventually break down with time and the scientifc information they contain 
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Figure 7: LTRN seasonwood chronology variability. Probability density functions and box 

plots of earlywood widths (EWW; blue), latewood widths (LWW; pink), and total ring widths 

(TRW; gray) for 21 seasonwood chronologies of the LTRN distributed across the historical 

range of longleaf (inset map; Little Jr (1971)). The frequency of marker rings (i.e., abnormally 

narrow or wide growth rings) is higher in LWW chronologies consistency across the 21 sites 

included in this analysis (gray arrows), highlighting the need for developing longleaf season-

wood chronologies for the species as opposed to only TRW, which is currently the standard. 

735 will be lost forever. In addition to loss from weathering, stumps and logs are 

incinerated during fre events. Therefore, collecting and archiving remnant ma-

terial in the southeastern US is needed for the purpose of bolstering current and 

future research projects focused on better understanding climate change, pro-

ducing accurate predictions, identifying risks and vulnerabilities, and informing 

decisions of how humans will adapt to future changes to our climate system. 
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741 Thus, we highlight the critical need for a campaign to Save the Stumps, es-

pecially by broadcasting to private landowners and public land managers the 

scientifc value of remnant longleaf pine material. Future research should be 

focused on collecting remnant material at locations before it is destroyed by 

e.g., fre, TCs, construction/development, sea-level rise (immediate coastal lo-

cations), decomposition, or arguably the most destructive agent of all, humans. 

Like all physical tree-ring samples, adequately archiving such material is impor-

tant for future analyses. 
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